A Conservative Three-Dimensional EulerianMethod for Coupled Solid–FluidShock Capturing
نویسندگان
چکیده
A new method is presented for the explicit Eulerian finite difference computation of shock capturing problems involving multiple resolved material phases in three dimensions. We solve separately for each phase the equations of fluid dynamics or solid mechanics, using as interface boundary conditions artificially extended representations of the individual phases. For fluids we use a new 3D spatially unsplit implementation of the piecewise parabolic (PPM) method of Colella and Woodward. For solids we use the 3D spatially unsplit Eulerian solid mechanics method of Miller and Colella. Vacuum and perfectly incompressible obstacles may also be employed as phases. A separate problem is the time evolution of material interfaces, which are represented by planar segments constructed with a volume-of-fluid method. The volume fractions are advanced in time using a second-order 3D spatially unsplit advection routine with a velocity field determined by solution of interface-normal two-phase Riemann problems. From the Riemann problem solutions we also determine crossinterface momentum and energy fluxes. The volume fractions in mixed cells may be arbitrarily small, which would ordinarily make the Courant–Friedrichs–Lewy time step stability limit arbitrarily small as well. We overcome this limitation using the mass-redistribution formalism to conservatively redistribute generalized mass in the neighborhood of the split cells.
منابع مشابه
The Nonlinear Bending Analysis for Circular Nano Plates Based on Modified Coupled Stress and Three- Dimensional Elasticity Theories
In this paper, the nonlinear bending analysis for annular circular nano plates is conducted based on the modified coupled stress and three-dimensional elasticity theories. For this purpose, the equilibrium equations, considering nonlinear strain terms, are calculated using the least energy potential method and solved by the numerical semi-analytical polynomial method. According to the previous ...
متن کاملCoupled BE-FE Scheme for Three-Dimensional Dynamic Interaction of a Transversely Isotropic Half-Space with a Flexible Structure
The response of structures bonded to the surface of a transversely isotropic half-space (TIHS) under the effect of time-harmonic forces is investigated using a coupled FE-BE scheme. To achieve this end, a Finite Element program has been developed for frequency domain analysis of 3D structures, as the first step. The half-space underlying the structure is taken into consideration using a Boundar...
متن کاملOptimization of A Thermal Coupled Flow Problem of Semiconductor Melts
In this paper we describe the formal Lagrange-technique to optimize the production process of solid state crystals from a mixture crystal melt. After the construction of the adjoint equation system of the Boussinesq equation of the crystal melt the forward and backward problems (KKT-system) are discretized by a conservative finite volume method.
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملTwo-dimensional Axisymmetric Electromechanical Response of Piezoelectric, Functionally Graded and Layered Composite Cylinders
A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered composite hollow circular cylinders of finite length. Under axisymmetric mechanical and electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) plane strain proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002